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MATRIX MEI’HOIEFCIRCALCULAT21tG

CANTILEVER-W. DEFLECTIONS

By Stemley U. Benscoter and &on L. Gossard

The method of numerical integration for calculatim of beam deflec-
tion is presented in matrix form to give it the advantages which are
inherent in an influence-coefficientmethod. Both the scaler method of
numerical integration and the influence-coefficientmethod may be improved
by introducing weighting matrices. Only distributed loaddng is considered.
lkamples are presented to shuw that the use of weighting matrices reduces
the calculation time reqtired to obtain a desired degree of accuracy.

INTRODUCTION

Two methods for calculating smalllldeflections of non-uniform besms
are in general use: a method of scalar numericel integration and a method
employing Influence coefficients. Either method may be expressed.In matrix
form to obtain maximum efficiency in the use of calculating machines.

The method of scalar rnmerical integration for obtaining deflections
gives all quantities that mey be needed in stress analysis; that is, shesrs,
bending mments, section torques, curvatures, twists, slopes, and deflec-
tions. (Seej for examples, references 1 and 2.) In problems such as
vibration and aeroelasticitywhere only the deflections are of Mrect
importance, matrix methods sre preferable since they provide a direct
linesr relation letween loads and deflections and avoid the intermeMate
calculations required in the sceler method. The method of influence
coefficients gives deflections due to concentrated loads through Wect
linear relations but requires first the calculation of the influence
coefficients and is not suited without mo~f ications to accurate deter-
mination of deflections due to distributed loadings.

A matrix method of nmerical integration incorporating weighting
matrices and especially formulated for obtaining deflections due to
distributed lenMng or torsional loadings is a feature presented herein.
This method is based upon an equivalence between distributed and
concentrated loading obtained by assuming the loading curve to be a
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2 NACA ~ NO. 1827

series of parabolic arcs. The weighting matrices for bending contain
weighting numlers introduced in reference 1 and applied in reference 2.
The weighting matrices for torsion have not been previously yublished.
Weighting matrices permit the use of lower-order matrices than would le
needed in commonly used procedures to obtain a desired accuracy.

As an introduction to the weighting methods, the commonly used
methods of numerical integration and influence coefficients for distributed
loadings, lased on step loading distributions, ere formulated in matrix
notation. The weighting methods described Include, in addition to
nmnericsl integration, procedures for using weightimg matrices in con-
junctionwith influence coefficients.

In alll,four matrix methods of different degrees of accuracy are
considered, and each method gives deflectim as a linear function of
distributed loading through an array of coefficientswhich m.ightbe called
7’influencecoefficients for distributed loading” or “transfmmation coeffi-
cients” to distinguish them clearly freonstandard influence coefficients.

Results of the application of three of the methods to a uniform
cantilever beam ere compared with exact solutions.

SYMBOLS

a segmental area %eneath torsional

ii

E

G

I

%

J

K

ki j

L

m

P

load curve

segmental area beneath twist curve (increment of rotation)

Young’s mOduhs of elasticity

sheer modulus of elasticity

manent of inertia of cross-sectional area

mass mment of inertia, Ter unit of length, about the
elastic axis

torsion constant

influence function

influence coefficient

length of beam

bending moment

concentrated lateral load
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P

Q

s

distributed lateral load

concentrated torsicmal load

static mcment of mass, ~r unit of length, about
the elastic axis

section torque

distributed torsionel load

besm shear

spanwise coordinate

bending deflection (translation)

curvature

concentrated curvature (bend)

slope of bending deflection curve

Simpson’s nunibers

torsionsl deflection (rotation)

twist (rate of rotation~er unit length)

length of a segment

circular frequency of natural vibration

mass per unit of length

alternate spmwise coordinate

NUMERICAL INTEGMTION

If full advantage is to be taken of the new procedures to be presented,
all relations between variables must be expressed in matrix form. In order
to provide a stipl.eillustration of the formulation of the matrix equations,
the well-knuwn process of numerical integration wild.he considered in sane
detail. A single typical scalar equation is written to illustrate the
linesr relationship being considered. The complete set of linear relations
are then written in,expanded matrix form. The expanded matrix equations

. .—— -..— —-.— .-—---<-.,
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4 NACA TN No, 1827

are written for a beam spn divided into four equal se@nents. The form
of the matrices will be sufficiently general, however, to indicate the
correct manner of extension to a larger numler of segments. The matrix
equations are also written in contracted symbolic form and may then he
considered applicable to a beam tith any number of segments.

Torsion

A cantilever besm with tistrilmted torsional load is considered fIrst
as shown in figure l(a). The loadlng curve is considered to be re~laced,
for lyrposes of numerical integration, by a step function as shown In
figure l(b). The step function is, in turn, replaced by a set of concen-
trated torques as shown”in figure 1(c). The value of the concentrated
torque is obtained by multiplying the ordinate to the load diagram by the
width of the step. As a scalar example Q3 is gf~en W

‘% = “3

In matrix form the concentrated torques are given by

F“l F“””’
%2 02000

Q3
L=5 00200

Q4 00020

fax 0000-1
L’J I_

(1)

(2)

The validity of this titrix equation is immediately seen frm an applica-
tion of the row-by-column rule for matrix multiplication. (See refOrence 30)
In contracted form this matrix equation may be written as

[Q] .$

In t~s equation [Q] and [q] are

[A] [~ (3)

column matrices, or column vectors

and [A] iS the square matrix of coefficients.

The section torques may now be computed. The section torque distribut-
ion is a step diagram as shuwn in figure l(d). As a scalar examyle ‘3 ‘s -
Riven by

. . ,. ,.. - 7-. ,+,------ -.,
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The matrix equation for section torques beccmms

. .

‘1

‘2

‘3

‘4

‘5.-

10000

11000

11100

11110

11111 1.
<%.%
Q4

‘5

5

(4)

(5)

In this equation the matrix’of coefficients may be reRarded as an inte-
grating Mtrti or a s~tion matrix. Throughoti the-paper there will
appear, in various equations, two types of integrating matrices. The
two integratingmatrices differ from each other in having values of zero
or unity on the principal diagonal. The two matrices are defined as
follows:

r],x.
1

10000

11000

11100

11110—

— —

10000

11000

11100

11110

11111— —

Equation (5) may now be written as fol.lows:

[T] = h] [Q]

(d

(7)

(8)

-—. — —— —.— -.. . ____ ..— -. —....., .- .. .
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The section torque5 may be
substituting frcm equation

NACA TN No. 1827

expressed in terms of the applied load by
(3) in equation (8); thus, .

F]= WI [Alkl (9)

The next step in the numerical integration is to divide the section
torques by the values of GJ at the corresponMng stations to obtain
values of twist e (change of rotation per unit of length). (See
figures l(d), l(e), l(f), and l(g).) Aty_pical
segment is given by

equation for the third

In matrix form the

I
el

‘2

‘3 =

e4

‘5

In contracted form

‘3
‘3=F

3

twists are given hy

L/GJl O 0

0 l/GJ2 o

0 0 l/GJ3

o

0

0

0 0 0 l/GJ4

o 0 0 0

this equation becames,

= [W]-’ [T]

The inversion of a
may be obtained in
in equation (12); thus,

diagonsl matrix is discussed
terms of the applied loadby

o

0

0

0

l/G

.

I
TL

T2

‘3

T4

!C5

(lo)

(n)

(s2)

in reference 3. The twists
substituting from equation ($

[q= i P1-%1 ml
(13)

,-- ,-.-:- ,- .. . -.
.. . .. . . . . ,,, . ..



NACA TN No. 1827 7

The twist distribution, as shown in figure l(g), is a step Magram.
This diagram may be integrated to obtain rotations. In scalar form &
is given by

In matrix form the rotations are given by

illll

01111

00111

L00011

00001

In contracted form equation (15) becomes

[d]=. p,] ‘[.]

[

‘%

‘2

‘3

04

*5

“J

(14)

(16)

[1The matrix ~ 11 ‘ is the transpose of Z ~ . The transpose of a matrix
L —4

is obtained by rotating the
reference 3. ) substituting
final formula for rotations

matrix about”its principal ~agonsl. (See
frm equation (13) in equation (16) gives the
as folkws:

[q= ; H’ [d-w [ml

The square coefficient matrices in equatim (17)
together to obtain a single matrix for convenience in

tions.
[1

The resulting matrix Ct is dependent only

properties of the beam and is defined as folllmws:

Substituting frcm equation (18) in equation (17) gives

(17)

may be multiplied
deflection calcula-

upon the structural

(18)

(U)

.—..-— — ..-. —..—. —.- .— - -— .-— - —-.- -—.-,. , ,..,, .,.



8 NACA TN No. 1827

The elements of the matrix
HCt

are coefficients which exyress a linear
.

relationship letween the rotations and the ordinates to the distributed
load curve. Since the numerical method that has been used for obtaining
equivalent concentrated loads is not highly accurate, a large numler of
stations along the span must be used to obtain accurate deflections.

BenMng

The calculation of bending deflections by numerical integration
involves the same procedures as those used in torsion. The matrix equations
are therefore written generally in contracted form. The diagrams of
figures 2(a), 2(b), and 2(c) show the concentrated loads I?i to be related

to the distributed load o~~tes pi by the equation

[’1 = NAN’]
(20)

Direct summation of the concentrated loads gives the shears according to
the following equation:

Substituting frcm equation (20) in equation (21) gives

(21)

(22)

The diagrams of figures 2(d) and 2(e) indicate that the mment-curve
ordinates may be obtained by direct summation of the areas beneath the
shear curve. The mcments are thus related to the

tiooo6-

10000

11000

11100

11110

.-
V1

V2

‘3

‘4

‘5.-

shesrs by the equation

(23)

.

-,~ .- —- , –7, .---7-,= .. —-,.. ..— . .
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This equation is

summation matrix

9

written in expnded form to illustrate the use of the

[1
zo“ b contracted form equation (23) becomes

L_l

[ml = ‘ [d [VI

Substitution of vaJ-uesfrm equation (22) in equation (24) gives

(24)

(25)

The mment values must now be Mvided ~y the corresponding EI values
which are illustrated in figure 2(f). The resulting diagram defines the
curvature of the beam. These curvatures may be considered, for yurposes
of numerical inte~ation,
as shown in figure 2(g).

to be the loadi~- on a con$ugate-beam ~reference 4)
W matrix form the curvatures are given by

[“1 = ~@ [m]

= ~]-1 [m] (26)

[1The matrix EI ‘1 is a diagonal matrix. Substituting fram equation (25)

in equation (26) gives

[q= $[_q-lpJ km] [d (27)

The loading on the conjugate beam may now be converted to equivalent
concentrated loads in the same manner used for the original beam loading;
thus,

[El =$ [’1[”1 (28)

The concentrated loads ‘~, shown in figure 2(h), may also le regarded
as concentrated curvatures. These concentrated curvatures may be visualized
as Ienti in a broken line. Substituting from equation (27) in equation (28)
gives

[=1 = :[’1 [“l-w El [Al[d (29)

.— ________ —. —.. ---–—— ,.-. —__
,.. .
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The slopes Pi, ah- in figure 2(i), are cquted by direct integration
according to the following equation: .

Substitution from equation (29) in equation (30) gives

tion

(30)

(31)

The deflections, as shown in figure 2(j), are obtained by an integra-
of the slopes according to the following equation:

[Y]=~p~ ‘p] (32)

Substitution of values frcm equation (31) in equation (32) gives

Equation (33) may be written in the foldmwing form for convenience in
deflection calcul.atimm, as explained in the sectian on torsion:

p-] ‘ [i-d [’1

where

(33)

(34)

(35)

Just as in the torsion case, the matrix [cd
ordinates to a distributed load curve and the
curve.

defines the relation between

ordinates to a deflection

lmFLmcE COEFFICIENTS

When influence coefficients are available, they may be used to detemnine
deformations directly without the necessity for numerical integration. The

—. ,--,, { .“. :’:’-, -,-
. ..;-. =--- . . ... .. .
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NACA TN No. 1827

influence coefficientsmay be canputed by the
section dealing with nmerical integration or
ment*. The relationships between load and
simple matrix equations and are shown only in

Torsion

IL

integration method of the
they may be obtained experi-
deflection are given by very
contracted form.

Influence coefficients define a linear relationahlp between a finite
numiberof concentrated loads and.a finite number of ordinates to the
deflection curve. The matrix of torsional influence coefficients will be

inMcated by r~l. ~s matrix is used to express the relation between

rotations and ;o;entrated torque loads as follows:

[(q=[q [Q]

The cmmon method of determining equivalent concentrated loads
distributed load is to replace the distributed-load curve by a
as used previously. The equivalent of [Q] frcm equation (3)
be substituted in equation (36) to obtain

[(l=H=t][AIIc(I

If the influence coefficients are to be computed by the ccmmon
numerical integration, a simple matrix formula may be used for

(36)

frm a
step curve
may therefore

(37)

method of
this purpose.

A comparison OF equations (17) and (37) shows that the influence coeffi=
cients are given by the following formula;

Equation (37), when cmpared with equation (19), provides

definition of the matrix
[1
Ct , as follows:

Ben&hg

The matrix of bending influence coefficientswi12.be

The relation between bending deflections and concentrated
given by the following equation:

(38)

a second

(39)

indicated by
[1‘b “

benting loads is

. . . . ... . . . — -. .— -.— —— ., .—,.. ,1
.,.
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[Y]=pq [q

The column vector of concentrated loads is replaced by a
distributed-load ordinates by substituting fra equation
tion (40); thus,

.

(40)

vector of
(20) in equn-

(41)

A comparison of equations (33) and (41) indicates that the influence
coefficients could be-ccmgmted from the folhwing formula:

Equation (41)

of the matrix

(42)

when compared with equation (34) provides a second definition

HCb , as follows:
L-1

[%] =$p%]p]

NUMERICAL =GRATIOI?WITHWEIGHTINGMATRICES

(43)

The matrix methods of numerical integration described in the foregoing
sections correspond to the ccmmoily used scalar methods. In those methods,
the manner of converting distributed loadings into concentrated loadlngs is
rather arbitrary. Such conversions ufnm@ lead to appreciable errors in
the deflections when only a smaU number of stations is used.

The following sections show that the arbitrariness of the cammon
methods can be largely removed by regarding the loading curves as series of

rlparabolic arcs. With such an approach, the matrix A in the equations of

the foregoing sectio~ is replacedby matrices wMchL=e designated
“weightingmatrices.

Torsion

Consider the distributed loading curve of figure 3(a)* If, for
example, the part of the curve between ordinates q2 =d q4 is asswd

.

,, .. —.- :--: .,, ------. t ‘“––,. -., . . .. . .. . . . ., .-



NACA TN ITO. 1827 13

to be a second-degree parabola defined by ordinates q2, q3j and q4j the
area ~ letween ordinates q2 d

‘%
is given by

(44)

The derivation of this formula Is shown in appendix A. Proceeding in like
manner for the other areas Termits each area to be written in terms of three
ordinates, as follows:

. .

al

%

a3

a4

o
,.

58-100

05 6-10

00 5 8 -I

[

00-18

00 0 0

In contracted form, equation (45) becmes

(45)

(46)

r-l

and IW1I is refened to as a weighting matrix. The areas Ia I correspond

to in}r%ents in section torque as iticated in figure 3(b). ‘~de section
torques T at the five designated stations are related to the increments
in section torque by the equation

[T]= F-d [al (47)

Substitution of values from equation (46) in equation (47) gives

(48)

In the section on torsion dealing with numerical integration, a
diagonal matrix of values of l/GJi was introduced as shown in equation (U.)

The individual values of GJi were assmed to be the average values within

a bay. This assumption corresponds to a replacement of the GJ diagram

— ————. __ —. .,—- .
‘j

—- —-— —
. .

. . ,.’,.. .,



14 NACA TN NO. 1827

by a step diagram as shown In figure l(f). It Is now nscessery to make
a slight modification of the definition of the dlagonsl elements of the

[1
matrix GJ . The elements of this matrti must now be defined as the

values of GJi at the stations where the rotations are to be determined.

These values are illustrated in figure 3(c). With this revised definition

[1of the matrix GJ the distribution of twist (fig. 3(d)) is given by the

equation

[’1 = Pm’]
(49)

or, upon substitution of v~ues from equation (48) in equation (1+9),by

[q= ; [q-’ PO] pll [q] (50)

In figure 3(@, the sreas & correspond to increments of rotation as
indicated in figure 3(e). These areas are cmputed on the assumption that
the twist curve can be re~resented by a series of parabolic arcs. For
exemple, the area ~2 is foundby the formula

(m

Equation (51)
is reversed.
a convenience
subsequently.

is similar to
This reversal
in the matrix
The expanded

in rotation to twists is

equation (~), but the order of the coefficients
is not necessary but is used because it provides
equations which will be derived and discussed
form of the matrix equation relating Increments

A=—
J-2

‘5 8-10;

-1 8500

0 -1 850

“o o -183

00 000

--

‘1

‘2

03

e~

‘5--

(52)

,

..,, ..,,:,---- ,-
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The elements in the matrices of equation (52) can be rearranged in such a
manner as to provide a convenience in the nmtrix equations that are to le
derived.
yosition

Although
equation
rule for

All elements of the first two matricee mnst be moved downward one
to give the eqyation in the following form:

h=—
12

00 000

5 8-100

-1 8500

0 -1 850

00 -185

.-

‘1

‘2

‘3

64

65.

(53)

the elements of the column matrix on the left-hand side of the
are out of their naturel order, aypUcation of the row-by-column
multiplication reveals that aLl of the linear relationships defined

by equation (52) are preserved
equaticm (53) is written as

in equation (53). In contracted form,

(54)

II-—

in which
[1
WI is a weighting matrix. The double prime is used to

indicate a double tranqosition, or double rotation, of the matrix. The
matrix is first rotated about its principal diagonsl in the usual manner
of tranqosition. The transposed matrix is then given a rotation about
“thesecondsry diagonal. The possibility of relating the vector E

[1
to the

[1
vector e ly means of the matrix

c1
W1 , which has already been introduced,

arises because of the precautions that have been peviously taken in making
prticular arrangements of the elements within the various matrices.

Substituting from equation (50) in equation (54) gives

(55)

The rotations @ sre obtained by a
rotation according to the formula

summation of the increments of

[(q= PO]’[q (56)

—-—— — — —.— —. .. . —.. -——
.,,,. . .
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.

FKRUequation (55) and equation (56) the finsl formula for rotations is
obtained, as follows: .

(57)

A comparison of equation (57) with equation (19) indicates that the matrix

of coefficients
[1%

[1
Ct

may be cmaputed by the following formula:

(58)

Since this formula for
[1
C-t incorporates the weighting matrices, this

definition is expected to yield more accurate solutions than the definition
given by equation (18),which is lased upon numerical integration without

weighting nunibers. ~ equation (58) the yoduct
Pd Pil

may be repre-

[1sented by a single matrix M ~

F]= [’J Ed (59)

The pOam pol’ rW~” [1can be obtained by a double transposition of M :

The validity of equation (60) is proven in appendix
frcm equations (59) and (6o) in equation (58) gives

for
[1Ct :

[1
Ct =

The matmices
PI ‘d P]”

dependent upon the properties

are standerd universal

B.
the

L-1

(d)) “

Substitution of values
foldowing formula

(a)

matrices which are not

of the beem or its loading. These matrices
ha~e therefore been-ccmput.edand ere given in appendix C for systems of 5,
7, 9, and U. stations. The form of the.linear relationship between the
rotations and the ordinates to the distributed load curve remains as given
by equation (19).

.

,-. . ---- -,- ..—. .-,-. ” .,- .-i ---- --- ,“’ .

.$



NACA TN No. 1827 17

Bending

The conversion of a distributed bending load of the type shown in
figure 4(a) into a set of equivalent concentrated loade of the kind
illustrated in figure 4(c) may be acccmrplishedin a manner analogous to
the conversion of a distributed torsional load into increments of torque.
The conversion to be used has been presented ad illustrated in scalar
form in reference 2. As in the section on torsion, the distributed
loading curve is regarded as a series of second-degree yarabolic srcs.
The princiyle used in the conversion is iticated in figure 4(b), which
shows the load applied to a set of simply supported sub-beams that react
on the cantilever beam at the five designated stations. The reactions of
the sub-beams on the cantilever beam are the concentrated loads P. The
staticsl equivalence of the concentrated loading and the Mstributed
loading is restricted to bending mments at the five designated stations,
but the effects at these stations are the only effects of direct interest.
By appropriate integration, the following typ~cal
concentrated loads are obtained:

At end station 1

( )pl = p+ 7P1 + 6P2 - P3

and at the intermediate station 2

‘2
(

=+ p1+lop2+p
)3

formulas for the equivalent

(@)

(63)

In expanded matrix form, the ccxupleteexpression of the equivalent
concentrated loads in terms of the orM.nates to the Mstributed loading
curve is

[1
7 6-100

2 20 2 00

A=— 0 22020
24

00 2202

00-1 67

P

!

1

‘2

‘3

P&

‘5

I (@+)

Written in contracted form, equation (~) becomes

[~l=ard[d ‘ ‘6’)

—.. --—— -.—.— —.--–.—— - — . —,,. , ‘,”,. ., ,:



18 NACA TN No. 1827

and FW21 is referred to as a weighting matrix.
I_-!

The average
figure 4(d), are
to the formula

shears h the bays of the beam, shown graphic- in
found ly a summation of the concentrated loads according

[’1 = Pil [’1 (66)

Substitution of values &ran equation (65) in equation (66) gives

[’1= aEl E@ rpl-I J-J

The bending maments at the five statims (fig.
gration of the shears with the formula

H= ‘ RI [’1

and, upon substitution of values from equation

(67)

4(8)) are obtained by inte-

( 68)

( 67), equation (6!3)becames

(@)

At this point, the reader is renlnded that the bending-mcment diagram for
the concentrated loads is a broken line whereas the bending-moment diagrem
for the distrilnztedloading is a arnoothcurve. Both diagrams, however, have
exactly the same set of ordinates at the five designated stations if the
distributed loading curve is truly a second-degree curve.

Tha distribution of curvatures cc,shown in figure 4(g), is obtained
by dividing the true bending moments by the appropriate values of EI &t
sJJ.stations along the
which the ordinates at

beam. This distribution gives a smooth curve, to
the five designated stations are given by the equation

[aj = [~]-’[m] (70)

[1
Substitution of m frma equation (@) in equation (70) gives

[~] ‘: [q-’pl [7 P4 [Pl.
(71)

.

., :-- —<-.:,-– - .- ------- -. ..-,
7..

,> ,’,.-. .. ...” ., ..,. .
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According to the conjugate beam theory, the
considered to be a loading on the conjugate

19

diagram of curvatures is
beat. By the use of formulas

typified by equations (@) and (63), th= distributed-loading on the conjugate
beam is then converted into equivalent concentrated,loada & on the con-
jugate beem as shown in figure 4(h). In contracted matrti form, t~se
equivalent concentrateed loads are given as

Substituting frm equation (71) in equation (72) gives

(72)

(73)

The average shears in the four bays of the conjugate beam, dlagrama-
ticdly shown in figure 4(f), give the average slopes of the actual beam.
They are obtained by a summation of the concentrated loads on the conjugate
beam with the fomnil.a

[“1= [il ‘ F] (74)

Substitution frm equation (73) in equation (74) gives

[B]= ;Lil’ Fil [wl-’ Ed M Ed [PI (75)

The deflections of the actual beam are equal to the bending mcmmnts in the
con3ugate beam. Ordinates to the deflection curve of the actual beam,
shown in figure 4(j), are found by inte&ation of the slopes of the actual
beam accorting to the formula

[’1 “M’ w (7d-

The final formula for deflections Is obtained by substituting from equa-
tion (75) in equation (76) as fo~ows:

(77)

-..————.—— . . .—-— —. ,- .,
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A ccmymrison of equation (77) with equation (34) indicates that

[1
c~ maybe defined as follows:

NO. 1827

.

the matrix

(78)

Since this formula fw rhl includes weighting matrices, it is expected

to yield more accurate ti~f~ectionsthan the formula given by equation (35)
obtained by numerical integration without weighting matrices.

The formula for rlc~ my be simplified by introducing the following

definitione:
1--1

P]= Kl El k]

[N]’=h]’ El’ El

The validity of equation (~) is proven in appendix B. Substituting
equations (79) and (&)) in equation (78) gives the foldmring formula

for [%] :

[%] = $[q”prp]

(79)

(m)

from

(a)

II
I-1 --

The matrices
lN_l - LNj

are standard matrices which are inde~endent

of the properties of the beam or its loading. They have been ccmrputedend
sre given in appendix C for systems of 51 7Y 9, ~d ~ stations● The form
of the linesr relationshi~ between the deflections and the ordinates to
the distributed-load curve ramsins as given by equation (34).

INH3JENCE COEFFICIENTS WITH WEIGHTING

The use of influence coefficients measured on
desirable in the final stages of design as a check

MATRICES

the structure msy be
on preliminary calcula-

tions or in order to account for the effects of items such as large
discontinuities in structure ma the restrsint of ~ing of cross-sections.
Weighting ntiers csn be introduced that will increase the accuracy of

.

d.eflectim calculations for .@trlbuted loading when influence coefficients
.

-. ..,-- -. ., ,-..,’ ----- -: .-,... . . . . . . .i~. ‘.. .
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are used. Weighting matrices involving the appropriate weighting mmibers
are introduced in the following sections.

Torsion

Ih the method of numericel integration with weighting matrices, no
consideration of concentrated torsionel loads was necesserq. It is therefore
necesssry to develop a concept of an equivalent concentrated torsional load
for use with influence coefficients. This concept is developed in detail
in appendix A and the result is stated here. If the &Lstributed torsional-
loading curve of figure 3(a)j for example, is truly a second-degree curve and
if GJ is constant over the length of the beemj the equivalent concentrated
torsional loads are given exactly by the formula

Q1.

Q2

%
Q4

Q5
,<

r7 6-100

220200

L

I‘2Z 0
22020

00 2202

00-1 67

In contracted form, equation (82) becmes

[Q]“i D’il[’1
If the equivalent concentrated torsional.loads

(82)

(83)

rlQ me used in conjunc-

tion with influence coefficients, the deflection’o~tained will be exact
for a uniform
from equation

Equation (~)

of the matrti

hem. The rotatio& are obtained by substitution of values
(83) in equation (36) as fo~ows:

(a)

when cmpdred”with eqtition (19) providesanother definition

[1.
Ct , as foll&s:

. pq-=$”[%]pi-: ._ (85)

- . .— —- ——— —..., .—--——,., . .. . . .. ’.,
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.

This defInition of [1
ct involves influence coefficients and weighting

nunibersand should prove to be more accurate than the formula given by
equation (39) which involved Mluence coefficients ~thout wei@tin8
numbers.

Bending
.

When bending deflections due to a distributed load are computed with
the use of influence coefficients, the method of eq~v~ent concentrated
loads gives more accurate results then the cmumon method involving the
stey-function app-etion. The equivalent concentrated loads as given
by equation (65), however, Sm appropriate for me PWOS8 Of comPutiW3
bendingmcments but not for the purpose of camputing deflections when used
with the itiluence coefficients. Certain advantages may consequently be
obtained if a new approach is made to the deflection problem in order to
develop weighting matrices for use in conjunction with influence coefficients.

When an analytical influence function K(x,~) is lmown for the
deflection at station x due to a unit load at station ~, the deflection
due to a loading p(~) my be expressed byme~ of a ~fi~te ~te@~
in the folluwing form (see reference 5, p. 266):

J’
L

y(x) = K(x,~)P(~)d5 (8Q
o

Equation (86) must be replaced by a system of linear elgebraic equations
by letting x and g take on a finite set of values xi m ~$ corres-

pomtlng to equally spaced stations. The evaluation of the definite integral
can be performed accurately by uEing Simpson’s rule. The value of y at
station xi may be in.dicatedby yi and the value of p at station ~,

by Pj- The value of K(x,~) for x = Xi mi E = ~j msY be i~~catedd

as an Influence coefficient lcij. Stipson’s numbers may be indicated

by ej. A single scalar equation of the system is written for deflection

at station 3 ae an example

Y3 = k31~1p1 +k32~2p2 + ‘33E3P3 + k3464p4 + ‘35E5p5 (87)

IYmn this equation the influence.coefficientsmay be seen to be formed Into .
a square matrix and the weighting numbers to be formed into a diagonal
matrix in order to express the system of equations in matrix form. These
matrices appeer as follows: .

., .,--- ..–,,-.–..’-.: .-: -”,,. . . .
..—. .-

.,. -: -- :
. . . . .. . . . . . . . ., .,,’
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. .

. .

. .

—

‘1°0

00

00

00

Sim~son’s numbers are well
in equation (@) to obtain

The
equation

Equation

.

.

.

.

.

0

0

‘3 0

0 G4

00

. .

. .

. .

. .

. k
RF

H. Kb

).=-
3 [1‘3

(88)

lmowm (see reference 5, p. 5) and may be used

r1oooo-

04000

11
W3 = 00200

100040

00001

(91)

($3)

system of linear algebraic equations which is equivalent
(%)

of the ‘matrix

may now be expressed in the follmwlng matrix form:

(90)

to

(91)

when ccmqyrredwith equAion (34) provides another definition

[%1 as fo12.ows:
Ld

b.I=%ZH51
(92)

— .— -—n. . —— ——— — --
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.

Since this formula for [1a
includes weighting numbers it should provide

more accurate deflections than the formula in equation (43).

AHZICATIONS TO NATURAL VIERATION PROBLEMS

Equations (19) and (34) may be formally stated in a single matrix
equation, as folJmws:

E :Io=rl
The suhmatrices

H - [h]
in equation (93) are the

relating distributed loadings to deflections and have been
in four ways with varying degrees of-accuracy.

(93)

square matrlces

defined previously

The loads may le ap@ied statically or dynamically. Natural vibration
is an example of dynsmic loading, the dynamic loads being the inertia
loads which accompaqy the accelerations of the system during vibration.
The cantilever beam under consideration vibrates naturalJy in any of an
infinite number of modes with each of which is associated a frequency of
vibration. If the deflections are small and in the elastic range, the
vibration in each mode is a simple harmonic motion in which all parts of
the beam osciIlate about the position of static equilibrium in phase with
each other and with the same frequency. The dynamic or inertia loads for
any mode may ye expressed in terms of the deflections and mass pro~erties
of the beam and the frequency as follows:

[1[-

fl 2Ln f+’
=(D

P Sp
—

(94)

[1In equation (94),u is the frequency of vibration, p is a diagonal sub-

[1
matrix of valuBs of mass per unit length, S is a diagonal.submatrlx of

static moments of mass per unit length about the elastic axis of the beam,

[I
end Im is a diagonal submatrix of mments of inertia of mass per unit

length a out the elastic axis of the beam.
[1

The elements of the matrix S .

[1
are sometimes called the coupling terms, and when S is different from

zero, each natural mode contains both torsion and bending deflections.

,~, ..-.,. —:$.-”’.-...-;. ... .. --— -- —.-.. .- .,--f. .-,’”,. . ....
-.

., ,..,. .. .
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I

LCcmbining equation (94) and equation (93) gives the ccmplete eq tion for
natural ~ibrations, as follows:

1- 1

11
Ct o

0 Cb

I
I

—

1[1[1
I

Im S @ ~ti I
=—
~2 (95)

spy Y
—

Equation (95) mey he consolidated for practical use by carrying out the
multimplicationof the two square matrices on the left side. The resulting
equation may be stated fn contracted form as follows:

I

(96)

i-l

I

The matrix IV I deyends only on the geometric, mass, and elaqtic properties

of the canti’le~erbesm and therefore remains constant for all pmles of
vibration. The solution of the vibration problem consists in finding sets

H@of numerical values of the vector and associated frequency m which

l-YJ
satisfy equation (96). Iteration is a convenient method for obtaining the
solution. Attention is drawn to the fact that, although the ac$ual
cantilever beam has an infifite number of natural modes of vibr tion,

Fequation (96) can be used to calculate only a finite number of odes
approximating with varying degrees of precision the exact modes in the
initial range of the frequency spectrm. Equation (96) detemines n - 1
modes, n being the number of designated stations on the beam. ~The preci-
sion with which equation (96) determines the exact modes is greatest for the
first mode, becoming less as the order of the mode increases. 1

COMPARISON OF METHODS

In order to provide a simple comparison of the relative merits of the
various methods of analysis that have been described, a uniform cantilever
beam has been analyzed for both static and vibrational deflections. React
values have been obtained by solv~ the well-known differential equations
which govern the deflections. In the static anelyses the loading is assumed
to be of triangular shaye with a value of zero at the ti~ and a maximum value

——.— ——. ——. — — — ,. —— ——. . . .
:.. - ,’

,. . . . ,-
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at the root of the tieam. In
to coincide with the elastic
vibrations mey be ccmsidered

NACA TN No. 1827

.

the vibration analyses the mass axis is assumed
axis of the beam so that torsional and Beting -
separately.

The four methods of deflection analysis that have been described sre
as foUmws:

(1) Numerical integration

(2) Influence coefficients

(3) Nmmric~ integration with weighting matrices

(4) Influence coefficientswith weighting matrices

Since the first method is well known and is usuaHy the least accurate of the
four methods, it has been omitted from consideration In this section.
Calculations of deflections have been made by the other three methods. The
first two natural frequencies and the static tip deflection have been
computed for 3, 5, and 7 stations and are recorded in table 1. The exact
values o%tained by solving the differential equations are also shown in
table 1. The torsional deflections corresponding to static loading and
vibrational motion are governed by the following two differential equations,
respectively:

In these equatims p is
radius of ~atim of the
deflections
governed by

corresponding
the following

(97)

(98)

the mass per unit length of the beam, r is the
mass, and o is a natural frequency. The bending
to static loading and vibrational.motion are
two differential equations, respectively:

m d4y—- ~zy . ()

~4

(99)

(loo)

.— . ...7.- ..-—\— —--- --.—. . . . ———. . . . . ..-. ... _ .-

,.. . . ...” -...--,,.. ,., ,,, ,,’ ..:
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The second method of calculation involves the use of influence
coefficients. The influence coefficients for a uniform beam canhe easily
ccmputed from simple formulas. These formulas constitute the influence
function, or Green’s fmtion, for the problem. The influence function
is a solution of the homogeneous differential equation for static deflec-
tion. It gives the deflections due to a unit concentrated load. Since
the function is discontinuous at the point of ap@ication of the load,
it must be defined separately for the regions on either side of the load.
If the deflection is to be determined at statim x for a unit load at
station ~ (see fig. 5), the influence function for torsionis defined
by the following two fo~as:

K-Jxj E)=; (X>E ) (101)

(x<E) (102)

The influence function for ben~ng is defined by the following two equations:

(103)

(x<E.) (104)

Using the exact values, as shown in table 1, permits computatioriof
the percentage error resulting frcm the use of each of the calculation
methods for each ntier of stations. Graphs ~f this percentage error are
shown in figures 6 to H. Inmost cases the absolute value of the per-
centage error decreases with an increase in the number of stations. lh
all.cases the use of weighting matrices with either numericel integration
or influence coefficients brings about an appreciable reduction in the
percentage error.

I&cm practical considerations of econ~ in calculation effort, these
graphs show that, for an allowable percentage error, the use of weighting
matrices yermits the deflection analysis to be made with a smaller number
of stations. In order to illustrate this yoint an e~ation of the graphs
has been made to determine the number of stations required to obtain
satisfactory accuracy defined to allow the following percentage errors:

-. — . ..— ——___ .-Z .—
..— —

. . . .
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Static tip deflection . . . . ..=.”.”””””=” ““”””””l
First vilmational frequency .= C== OOCOO==OWO ● -O *O* ~
Second vibrational frequency . . . . . . . . . . . . . . . . . . . . .

The number of stations required to give satisfactory accuracy, according
to the above definition, has been read from the graphs and recorded in
table 2. Fran an inspection of this table it Is seen that, in five out of
six deflection analyses, the use of influence coefficients alone would
require more than seven staticm to obtain satisfactory accuracy. When
weighting rnmhers are used with influence coefficients, satisfactory
accuracy is obtained in five out of six of the deflection snalyses with
less than seven stations. When weighting nuuibersare used with numerical
integration, satisfactory accuracy is obtained in dl six deflection
anslyses with less than seven stations.

The example that has been used for illustration purposes is a uniform
beam and the relative percentage errors illustrated in figures 6 to I-1cannot
be considered as strictly of general applicabi~ty. This indicates clearly
the need for future resesrch in stties of nonuniform beams= Future research
must also desl with the development of more accurate weighting numbers and
~actical methods of analysis with concentrated loads.

CONCGUD13JGREM&RKS

The advantage of an influence coefficient method of de~lection analysis
is that it provides a direct linear relation between the loating and the
deflection in explicit form. The ssme advantage may be obtained in a numeri-
cal integration process, employing beam stiffness properties, if the anslysis
is expressed in matrix form. The linesr relationships for distributed
loading have been developed.

The accuracy of both the numericsl integration and influence coeffi-
cient methods can be improved ly the introduction of weighting matrices.
Consequently, for a desired degree of accuracy, smaller matrices may be
used. This procedure results in an appreciable saving in calcul@ion
time since the computing work varies as the squcue of the order of the
matrices.

Iangley Aero=uticti hboratorY ‘
National Adtisory Committee for Aeronautics

Iangley Air Force Base, Vs., Deceniber7, 1948

.-
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DERIVATIONS BASED ON THE MRABOLA

Formula for Areas

In the method of nwnerlcal integration with weighting matrices,
incremmts of section torque and increments of rotation correspond,
respectively, to increments of area under the curve of distributed
torsional loading and increments of area under the curve of twists. ~
the calculations, these curves are appr-ted by a series of second-
degree perabolic arcs defined by grouys of three ordinates. The formula
for increments of area under a second-degree parabola are derived as
follows: In figure 12, the ordinates fl) f2Y ~ f3Y seperatedby

the distance h, re~esent a typical group of three ortinates to a loading
curve or a curve of twists. With the coordinate system shown in figure 12,
the equation of the second-degree curve defined by the three ordinates
may be written in the form of Lagrange’s interpolation formula (reference 6)
as follows:

The area al between ordinates fl and f2 is found by integrating

function f between the limits x = O and x = l.,and the result is

(Al)

the

J
?&

al . fax= ~ (5f1 + 8f2
)

- f3
o

(A2)

Formulas for other areas may be obtained by increasing the subscripts in
equation (A2). For example, the formula for area ~ in figure 12 would
have the form

a2’;5f2+8f3 )-f~ (A3)

.

The area a2 mayalso be’cm&ted by using 8&ation (Al)“andintegrating
fran L to 2A. The resulting fo~ula is

az . ~+ ( )-fl + 8f2 + 5f3 (A4)

.. ---.-— — ---- .. ,-- ———.
.- .: .,
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A fo-a of the type given by equations
left end of a learn. The type of formula
used at the right end of a beam. Either
intermediate se~nts of the span.

NACA TN No. 1827

(A2) or (A3) must te used at the
shown by equation (A4) must be
type of formula may be used for

Formulas for Equivalent Concentrated Torques

The concept of equivalent concentrated torques, necessary for the
use of weighting matrices with influence coefficients, is based on the
following condition of equivalence: In the beam shown in figure 13, the
set of rotations, at the five designated stations, due to the concentrated
loading must be identical with the set of rotations due to the distributed
loadhg. If this condition is fulfilled, the concentrated torques Q of
figure 13(3) must produce a set of increments of rotation in the bays of
length k equal to those producedby the distributed torsionel loading of
figure 13(a).

Consider first the increment of rotation between station~ 1 and 2
yroduced by the distributed loading. The section torque at a distance x
from the tip is given by

—

nX

The twist at the distance x

Ox =

Tx=l” qdx
Uo

is givenby

(A5)

(AQ

The increment of rotation between stations 1 and 2 is then given by

Consider next the increment of rotation between stations 1 and 2 pro-
ducedby the concentrated loading. The section torque between stations 1
and 2 is equal to Q1. The twist at the Mstance x between stations 1
and 2 is given by

“Ql
ex=—

GJx

.

(A8)

.----— ----- ----- .— —— —. —--- .—. _ .._ ___ .
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The increment

Since the two

he equal, the

of rotation between stations 1 and 2 is

expressions of equations (A7) and (A9) for A@12

following equation is obtained

Equation (AIO) may tieintegrated if the values of q and GJx

as functions of x. The present considerationwill be limited
of constant GJ; equation (AIO) can therefore be shrplified to

xx

s!
Q1=~o o qaxax

(A9)

are to

(fuo)

are given

to the case
the form

(All)

Equation (All) is found to apply also when GJ is a step function. The
variation of q is assumed to be given by the second-degree parabola
defined ly the ordinates ql, q2, and q3. The expression for q is then

obtained frcm equation (Al) by substituting q fcm f, as follows:

(Au)

With this expression for q, equation (All.)beccnnes,after inte@?ation,

(A13)

The expression for Q2 in figure 13(b) will now be derived. It is
necessery to consider Q2 as consisting of two prts; a part %1 asso-

ciated with the distributed loading between stations 1 and 2, and a

.Z —
_ _ —.——. .

,., ,.—

.,.
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I?- f+~associated with

The sum of %1

W ?21 ‘~ws
the rotations at
between stations
due to the loads

- %3
the total

NACA TN No. 1827

.

the distributed loading letween stations 2 and 3.

equals C@. In figure 13(b), if the sum of Q1 -

loading between stations 1 and 2 in figure l~(a),

the five designated stations of the beam due to the loading
1 and 2 in figure 13(a) will le equsl to.the rotations
Q1 and Q2~. This consideration provides the definition

of Q21, as follows:

J’Q21= )-Q1 (A.14)

The integral in equation (A14) is the area under the q-curve between
stations l-and 2 and in accordance with equation (A2) is given by

J’
).

o
@=i(5%+%-~3)

Substituting frcunequations (A13) and (A15) in equation (A14) gives

(A15)

(m6)

The concentrated load %3 bears the same relaticm to the distributed

loading between stations 2 and 3 as the concentrated load Q1 leas to

the distributed load@ between stations 1 and 2; this relation gives that
part of the total increment of rotation between stations 2 and 3 which is
due to the &Lstributed loading between stations 2 and 3. The defining
equation for %3, similar to equation (AU) i% as follows:

./]

‘ax
Q23 = * qitxax (A17)

Ah

Substitution of velues frcm equation (AJ2) in equation (A17) gives, after
integration,

(JU.8)
.

.. ,, ..- .,-. —-..,. . . ,,
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The sum of equations (~6) and (A18) gives

?2 “ii (u. +m*+9 (A19)

Formulas for the equivalent concentrated loads at the other stations mey
be derived by proceed@ in the manner used to derive equations (A13) and

(A19)●

.’

.—— — .—. ._ _.._ ___ -—— ___ _ —. —-— —––—... . ---
,., . .. . . ,’
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APPENDIX B

DOUBIZlTRANSPOSITION OF

--

MATRICZS

lJA matrix A is tranqoeed ly rotating it about its principal

diagonal.
[1

1
The trsnsyosed matrix is inticatedwith a prime as A .

H
If the matrix A ‘ is now rotated about the secondery diagonal the

[1
11

new matrix may be indicated with a double yrime as A .
[1

II
The matrix A

may be said to be doubly transposed. These tren.qosition processes
may be illustrated by the following three equations:

uA– =

1

%21 %?2 %!3

% a32 %3

% % %

[1 ~
A’=

% ?22 a32

L%3 %3 %3—

a33 a32 a3i

[1 ~
A“=

%23 a22 %

(Bl)

(B2)

(B3)

The object of the preseti apyendix is to prove the validity of the

formulas for
[“1’’ -[q” -

as given in the main body of the paper. For

this purpose the several types of symmetry which matrices may have must
first be considered. If a matrix is equal to its transyose, the matrix
is said to be symmetrical. This condition might be referred to more
specificsMy as a principal syametry. A matrix that remains unchanged
after rotation about its secondery diagonal might be said to have secondary
Syllmwtry. If a matrix remains unchanged after a double transposition,

—,—,.. . . ... ..-. --—— .- . ..— .. ..—
.- ;-.’,.. ,, --- ,.,. ,<-.!
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the matrix is described
three types of symmetry

[Al, [4’, “ [4” as ‘oums:

35

as being centrosymmetricsl (reference 7). These
may be expressed by equations relating the matrices

Principal symmetry:

Secondary symmetry:

Central Symmetry:

[AI=[A1’

[Al’ ‘H”

M= Id”

(B4)

(B5)

(B6)
LJL2

[1
A relationship showing that any matrix A “ can be obtained from the

[1
matrix A by shrple matrix multiplications is now necessary. A matrix

rlJ must be introduced according to the following definition:
L-1

“[1J=

This matrix has values of

[1
where. If a matrix A

interchanges the rows of

Goi

010

L100

(B7)

unity in its secondary diagonal.and zeros else-
rn

is premultiplied by LJ 1,the procedure merely

[1A ; thus,

~31 a32

Lan a=

[1
If a matrix A

[1
is yostmul.ti@.iedby J ,

changes the columns of [1A ; thus,

ra13 a12

[1[1 I
A J = a23 a=

~33 a32

a3T

%23

%3—

the

a~

a21

a31

-1

procedure

—.—_.. ___ _ __ —— ——

(B8)

merely inter-

(B9)
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.

[1If a matrix A
[1

is premulti~ied by J
[1

end postmultiplied by J ,

the procedure brings about a double rotation of the matrix about horizontal .

and vertical central sxes. The result is as follows:

[JI[4[JI =

If equation (B1O) is ccmrpared
on the right-hanikside is found to
and therefore

[1%3 %2 “31

%3 %2 %

53%2%

(B1O)

with equation (B3), the expanded matrix
be exactly the same in both equations

p]” =[qp]Fl (BH)

[1
An unusual.but tiportant property of the matrix J must now be noted.

The matrix is its own reci~ocal, which msy be expressed by the followlng
equation:

[Jr‘[JIH’M

[1In this equation I is the identity matrix.

Development of the desired formulas is now yossible.
case will be considered first. According to equation (59’

is defined %y the formula

p]= [~J pll

(m)

The torsion

[1
the matrix M

(B13)

According to equation (Bll), the doubly-transposedmatrix msy be determined
from the equation

The identity matrix

[q” ‘~J] PO] p~ [J] (B14)

my be tierted as a factor at any point on either side
of an equation without changimg the value of”either side. Equation (B14)
may therefore be written in the following fmmu

~(B15)

.

.. . .... . . . .. . . . —.. .- ..-:- ,. ~.- ,:, . “..,,,:”,--.-=- -.
,“.’. ..’ . ----- ., .’., ., ,-
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Equation (B12) may now be combined with equation (B15) to obttiq

[1
II

M ‘[z H [’1[’1 [Jw
Formula (Bll) applied in eqtition (B16) gives

[1J

[Ml” = hl” Ed”

Aninteresting feature of the process of double transposition
at this yoint. Comptiing equations (B13) and (B17) indicates

37

(B16)

(B17)

can be noted
that the double

transposition of a product of matrices can be obtained by a double transposi-
tion of the individual matrices without changimg their order.

[1
It must now be noted that z ‘ is symmetrical about its secondaryo

diagonal. Consequently,

k]’ = M“ (B18)

Substitution of vslum frcm equation (~8) in equation (B17) gives the
following fammla:

[Ml” = [~1 ‘ Ed”
(Big)

This formula was previously given in the main teti as equation (60).

The bending case is now to be considered.. According to equation (79)

[1the matrix N is def~d by the formula

[’1 ‘M [%1 [WJ

tiploying the rule that has just been
this equation to be doubly transposed

The matrices

equation (B21)

[I? ’,,2 poy

[jZo’ and [%]‘ both

may be written as

developed.psrmits both sides of

(B20)

to give

Pd “ Pd.’r

have secondary

(B21)

symetry so that

—..-. .—— .— — .—— -— .. 7.._ __ .. .—— —.—
,, ,.! . ...,., .

. . . ..:’
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[d” ‘ Ed’ [Q’ Ed”

A consideration of the expanded form of the matrix
[1
W2 , as shown in

equation (~), indicates that this matrix has centrsl symmetryj hence

P21 = El “

Substitution of values of equntion (B23) in equation (B22) gives the
following formula:

P!]” = P&l’ M’ Pa ‘

(B22)

(B23)

(B24)

This formula was given in the main te@ as equation (~).

.

-., . .,- ... :-— -----“.. ,.-: :-.
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STANDARD MATRICES

The matrices b] m [4” serve to weight and integrate the

torsional loading curve and the twist curve, respectively. The

matrices [N] end [N]” serve to weight and perform a double integra-

tion of the load curve and the curvature curve in bending, respectively.
These matrices are standard matricea which may be tabulated and used
for various cantilever-beam analyses. The matrices must be computed for
each different numiberof subdivisions of the span. The order of each
matrix will be one greater than the nuaiberof se~nts into which the
S~ iS divided. Equation (59) gives the following formula for the

[1
matrix M :

[Ml = [’J Pi

[1The formula for the matrix N , equation (79), is

[“1 ‘[’d [d hl

The matrices [M]” and [N]” are obtained frcm
[Ml “ [’1 by a

double transposition. Equations (Cl) and (C2) have been used for

‘ [Ml-,[Nl-computing the matrices

(cl)

(C2)

— ..—. — ——.-——. f .~-——— “——— -“—— ‘—, .. ,
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The matrices of fifth order are as follows:

Fifth Order Matrices

[1M

5 8-10

5137-1

513127

~13J-115

[1N

‘o o 0 0

7 6-10

163200

25 @212

34884424

T

o

0

-1,

J4

F

o

0

0

2—

[1M “

–41511135

-1 73.2135

0 -1 7135

00-1 85

J3 o 0 OL

[1
N “

.1
~24448834

o 221 @25

00 0 32 16

00-1 67

00000

It is seen in the foregoing examples that the matrices rMl” and r N1”

areobtained fran
[Ml = [’1

by a double transposit~o;. Sinc~ t;ese

examples illustrate the transposition process clearly, the higher order
matrices will not he shown in transposed form. The higher order matrices
are as follows:

,.. ... --., ---,’
.. . . . ., .”-., .,”,

{:, .--,
,<-. .
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Seventh Order Matrices

[1
M

[

000000

5 8-1 0 0 0

5137-100

513 127 -10

51312127-1

5131212127

513121212.15 1
0

0

0

0

0

-1

4

[1
N

r000000 K

7 6-1 0 0 0 0

I16 32 0 0 0 0 0

I25 f321 2 0 () o

I34 884424200

I43u667482420

L52 144 90 72 48 24 2_

.- ..-—— .. .. . ___ _. —.——~ — —. .,- .,-.,
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Ninth Order Matrices

[1M

60000000 T

5 8-1 0 0 0 0 0 0

513 7-1 0 0 0 0 0

513 X27-1 OOOO

513 I2U27-1OOO

513121212 7-1oo

513121212127-1o

51312121212127-1

q 13121.2121211154

[1
Ii

— —

00000000 0

76-1 OOOOOO

16 32 0 0 0 0 0 00

25 60 21 2 0 0 0 00

34 88 44 24 2 0 0 00

43 H.6674824200 O

5214490724824200

~ 172 U3 9672482420

70 200 136 120 96 72 48 24 2—

.

.

---- —. -,...- - T—-”:;- .-.— –.-——- ,. —--- —--—- ~—- ----- ---——
. . ..- -. ,, .,.. .- .,. .,
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K1.eventhOrder Matrices

r]
M

;0000000 o

5 8-1 0 0 0 0 0 0

713 7-1 0 0 0 0 0

‘513 I27-1OOOO

513 I2I27-1OOO

513 X2 I2I27-1OO

513 J2U2MI 27-10

51312121212127-1

5131.212121212127

513121212121212Z

00

00

00

00

00

00

00

-1 0

7 -1

L5131212121212121.1 151

nN

‘0000000 000:

76-1 OOOOO 000

16 32 0 0 0 0 0 0 0 00

25 @212000000 o

34 88 ~ 24 2 0 0 0 0 00

43u6 67 48 24 2 0 0 0 00

52 144 90 72 48 24 2 0 0 00

~ 172 U3 96 72 48242ooo

70 200 136 WO 96724824200

79 228 159 14-4 120 9672482420

88 256 la 168 IA4 120 96 72 48 24 Z—

43
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TABLE I

~~lmmm-cmmmwlmm

Torsion Bending

First Second static tip mrst SaOond Static tlp
frequency,frequanoy,aefI.ecticm, frequency, frequency, aeflaoticm,

Wniber of
3tatlom

w @ $1% J= “ 4$ ,.~
r

(a) (b)

L Influence-coefficient method

3 1.530 3.11 0.I.25 3.16 13.70 o.02a

5 1.560 4.38 .156 3.42 20.54 .031.6

7 1.567 4.57 .le 3.47 21.2g .0326

Weighted-influence-ooefffoient method

3 1.575 5.39 O.lq 3.56 15.63 0.0347

5 1.571 4.73 .lq 3.52 22.&l .0334

7 1.571 4.72 .167 3..52 22.08 .0334

Weighted-Integration method

3 1.5& 7.59 0.167 3.58 14.58 0.0347

5 1.573 4.a .167 3.52 22.08 .0334

7 1.572 4.74 .167 3.52 22.26 .0334

llkactml.ues

1.571 4.73. 0.167 3.52 22.03 0.0333

— — ——
=ls=’

%oad distributim triangular wlt.hIntemim ~ at root.

%&lUstiibuticsn tikngular with intensiw ~ at root.

-— ——,——-—————— .— .—— —.-—— ——-
,,. . . .,
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TABLE II

sTATIO~ ~ FOR SATISFAC’IK)RYACCURACY

Influenoe Weighted
Quantity influenoe

Weighted
coefficients integration

coefficients

Torsion

% 5 3 3

‘2
>7 5 5

$1 >7 3 3

Bending

% >7 4 4

‘2 >7 7 5

Y~ >7 5 5

. —.—..—. .. --— .—.,., .,. ,- -y~—,. . . .,
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(a) Load.

(b) Equivalent step load.

(e) Stiff ness.

(f) Equivalent stiffness.

e.

(c) Equivalent
concentrated loads. (g) Twist.

(d) Section torque.

+&+’
th) Rotation.

Figure l.- Torsional deflections obtained b~

step functions.

. . ——. .——. — ... -—. ,,, - .— ..— ——
...- ,.
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(a) Load.

P5

C53&!4
(b)Equivalent step load.

‘IYai”
(f) Stiffness.

(9) Load on conjugate beam.

(cl Equivalent (h) Equivalent load on
concentrated loads. conjugate beam.

(d) Shear.

L@&l
(i) Slope.

m5

(e) Mot-nent. (j) Deflection.

=S=

Figure 2.- Bending def-lec-tions obtained by

Step functions.

., .-, -----. . -.”-,- . . . ,-, ,, ..”. . . . ~ ,.
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(a) Load.

T5

~ ‘)’ec’iO”’or
GJ ~

k) Stiffness.I

e5

EE!zE&J.l(d) Twist.

[e) Rotation.

=&=

Figure 3.- Torsional deflections obtained by

parabolic arcs .

———-.—— —— .— — —---— — — .———. ————.,- .. ’:.,
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(f) Stiffness.
(a) Load.

(b) Load acf-ing

through sub-beams.

(g) Curvature.

(c) Equivalent
Cone en+ra+ed loads.

(h) Equivalent load on
conjugate beam.

(d) Shear.

m
5

(e) Moment.

Figure 4.-

———.
.. ... . .. .

Bending

(i.) 510pe.

9,

,Q&izl’
deflections obtained b~

parabolic arcs.

., ------,. ,:. ,.-.,.
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(a) Beam Wi +h

qn;+ torque .

(b) Rotation.

(c) ham with

unit force.

(d) Translation.

=5=

Figure 5.- Deflections of a cantilever beam

with unit loads.

. . . ..-. .—. — -——- —- —. .—v -z -.
,~,
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Error,

o
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-1
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Weightedt
Integration

coefficients
/

7 ~ . .
---

//@
w

d ,
/

6
/

/
/

8
/ Influence

coefficients
t

1234567 8

Number of stations

T

Figure 6.- Cornparison of errors in first

torsional f recpency.
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50

40

30

20

Error,

10

percent

o

-lo

-20

-30

-40
0 I 2345678

Number of stations

-

Figure 7.- Comparison of errors in second

torsional frequency -
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/ r Coefficients
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.

10

5

0

-5

Error,

-lo

percent

-15

-20

– 25

-30

“Weighted “
influence

,coeff.icle~s ‘

— — — . .
{

d~-

Weighted /e
/ 0

integration /
/

/
,

/
t

/ \ _lnf Iuence

/’ coefficients

1’
J

01 2 345678

Number of stations

Figure 8.- Comparison of errors in static

torsional tip deflection.
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-1
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-3

Error,

-4

percent
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0
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Weighted

v, integration
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/

Influence 0
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01 234
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Figure 9.- Comparison of

bendin 9

5678

stations

errors in first

frequency.
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10

5

0

-5

-10

Error,

-15

percen+

“ 20

- Z5

-30

-35

-4-o
o I 2345678

Number of stations

T

Figure 10.- Comparison of errors in second

bending frequency.
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Error ,
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Weighted “
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0
/-
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I coefficients
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0 1 2345678

Number of stations
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Figure i I.- Comparison of errors in static

bending tip deflect-ion.
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f

I

J-
Parabola

f=
f~

f,
al a=

> z

l-J-b-l
Figure 12?.- Areas under a parabolic curve.

t

(a) Torsional

loading.

Q23ccQ21

(b) Equklcnt
%< concen+ra+ed

Q5 Q4 Q9 QZ Q, +orques.

Y%=

Figure i3. - Equivalent concen+ra+ed

torsional loading. -
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